Click here for english version

  Como se leen los valores de los capacitores o Condensadores 




Como se leen los valores de los capacitores o Condensadores
Publicado: 2019-06-09

Condensadores, capacitores llámense como se quiera siempre están presentes en la mayoría de los circuitos. Si hablamos de máquinas Tragamonedas es por seguro que los ha visto en las bobinas, circuitos de Hopper, filtros de línea , filtros de ruido en lámparas decorativas , mejor dicho en toda la máquina. Cuando se presenta un corto circuito, debemos reemplazarlos por el mismo valor

Hoy hablaremos de como leer el valor de los capacitores (o condensadores) para circuitos impresos tradicionales (con perforaciones).

Aunque si el sistema descrito puede ser usado también con los componentes a montaje superficial, algunas indicaciones como por ejemplo la tolerancia y también la tensión de trabajo, en estos últimos no se encuentra escrita.

Existe una codificación precisa para indicar el valor de las resistencias, el famoso sistema de las bandas de color. Por el contrario, con los capacitores (o condensadores), los fabricantes usan distintos métodos creando a veces un poco de confusión.


Foto de un capacitor electrolítico en el que podemos observar claramente el valor de capacidad y la tensión máxima de trabajo


Generalmente se usa una codificación que consiste en un numero de tres dígitos seguido por una letra.

 

Capacitores poliéster para alta tensión


Antes que los puristas se lamenten, aclaro que la abreviación correcta del microfarad es el símbolo griego micro (µ) seguido por la letra F mayúscula. Debido a que generalmente cuando uno escribe un texto, no tiene a disposición los símbolos griegos en el teclado o también para evitar que en los distintos pasajes y codificaciones con distintos sets de caracteres a través de internet, este símbolo no sea transcrito erróneamente se tiende a reemplazarlo por la letra minúscula "u" aunque si no debemos olvidar que estamos hablando siempre de la letra " µ " (micro). Otro caso de este tipo es el símbolo Ω (ohm) que a veces se reemplaza con la letra "E" o, frecuentemente, no se escribe.

 


Capacitores para altísima tensión (12.000V) de 2nF


Como se dijo al inicio, a excepción de los capacitores electrólitos que generalmente superan ampliamente el valor de 1 microfarad, el universo de los capacitores usados en electrónica está compuesto por capacitores con valores que van desde pocos picofarad o pF (capacitores cerámicos o disco que parecen lentejas) hasta los cercanos a 1 microfarad o 1 µF (poliester multiestrato).


El motivo por el cual los padres de la electricidad y de la electrónica nos han complicado así la vida creando una unidad tan grande (el farad) que nos obliga a trabajar con semejantes submúltiplos.

 

Típico capacitor de 100nF




Recordarse esta relación es importante porque con valores relativamente grandes de capacitores, por ejemplo uno de 1 uF, hablar de él en una descripción como "el capacitor de 1 millon de pF" es medio incomodo y lo mismo vale para un capacitor de 18pF (usado normalmente en los generadores de clock de los microcontroladores) si para indicarlo usáramos el valor 0,000018 uF, (algo bastante ilegible). Por lo tanto, aconsejo a los iniciados en electrónica de recordarse bien la conversión "al vuelo" entre los tres múltiplos (micro, nano y pico).

 

Ejemplos de valores típicos




Volviendo al sistema de codificación para capacitores entre 1pF y 1uF (la casi totalidad de los capacitores a excepción de los electrolíticos), decíamos que el valore se encuentra indicado con un número de tres dígitos seguido por una letra.


 

Por ejemplo: una capacitor con el número "472" es de 47 + 2 ceros, o sea 4700 pF (picofarad). Debido a que hemos superado los 1000 picofarad podemos "pasar" de submúltiplo y entonces podemos decir que nuestro capacitor es de 4,7nF. En este caso no nos conviene usar la unidad micro porque el valor no sería fácil de leer (0,0047uF). Con valores más grandes, como por ejemplo los usadísimos capacitores de filtro con el número 104, es decir, 10 + 4 ceros = 100.000 pF o también 100nF, es común que los proyectistas de circuitos usen la indicación

0,1 uF o .1uF (punto uno uF).

 

 

Capacitor de 100nF, +/-5% de tolerancia y 100V de tensión máxima de trabajo

Ahora hablemos de la letra que se encuentra al final del número de tres dígitos. Es simplemente la tolerancia del componente, es decir, cuanto puede ser diverso el valor real respecto al valor indicado.

Confieso que, por mucho tiempo no tenía la menor idea de su función y lo he descubierto después de muchos años de electrónica. Probablemente porque trabajando "normalmente" es un parámetro no muy importante.

En la figura siguiente podemos observar cada letra a que tolerancia corresponde. Es interesante observar el hecho que algunas letras corresponden a "tolerancias asimétricas" como por ejemplo la "P", es decir, el componente puede tener una mayor capacidad respecto a la indicada pero no una menor. Este tipo de tolerancia es usada con los capacitores de "filtro" donde un posible valor mayor de lo indicado no perjudica mínimamente el funcionamiento del circuito.


AQUÍ las Tablas de tolerancia y de tensión máxima de trabajo

 

 

Por último nos falta una información que en ciertos casos podría sernos útiles y que es la tensión máxima que el capacitor puede soportar sin que se rompa. Como sabemos, un capacitor está compuesto por una serie de placas metálicas aisladas entre si. Este material aislante es muy sutil, especialmente en el caso de capacitores de valores grandes.


 

Dimensiones de dos capacitores de 220nF, el de la izquierda de 50V mientras que el de la derecha de 630V

Un ejemplo clásico de lo dicho son los capacitores usados para encender leds con 110V o 220V. Estos tiene que trabajar con tensiones elevadas y por lo tanto son mucho más voluminosos que los capacitores de los mismos valores de capacidad pero con tensión de aislamiento eléctrico más baja como podemos observar en la fotografía.

Muchas veces, la tensión máxima de trabajo la podemos encontrar escrita claramente, especialmente en los capacitores proyectados para trabajar con tensiones elevadas como podemos ver aquí, en algunas fotografías de este artículo. Otra veces, el valor de tensión directamente no se indica. Sucede a menudo con los capacitores usados en circuitos de baja tensión. Estos capacitores soportan tensiones entre 50V y 100V, bastante por encima de las típicas tensiones de trabajo de 12V/18V.

Por último, y no menos importante, existe una codificación numérica que usan algunos fabricantes y que consiste en un número seguido por una letra. En el diseño en el cual se encuentra la tabla de las tolerancias, podemos ver también la tabla de las tensiones máximas de trabajo.

Como todo lo relacionado con la tecnología, nada es absoluto y por lo tanto, siempre aparece un productor de componentes "fuera de los estándares" que usa sistemas de indicación de los valores distintos a los que hemos descrito.

De cualquiera manera, en líneas generales la descripción de este artículo, se adapta bastante bien (a veces con pequeñas variaciones) a la mayor parte de los capacitores en comercio.



Tablas usadas para calcular los códigos de tensión y tolerancia

 








 

Como te pareció este material?
¿Cómo te pareció esta noticia?

me encanto el articulo de Mundo Video

14

Me encanto

me gusto el articulo de Mundo Video

12

Me gustó

no me gusto el articulo de Mundo Video

0

No me gustó

punto de venta online mundo video

No te puedes ir sin leer estas noticias!


Billetero JCM Manual de Entrenamiento UBA-10 

Como se leen los valores de los capacitores o Condensadores

Un billetero es una de las tres partes importantes de una máquina de Casino o Vending, pues es el puerto de entrada de  dinero al equipo y es este ( el billetero ) el encargado de verificar que los billetes sean válidos, así también como dar el cambio o dinero excedente en máquinas expendedoras según sea el caso.

 

El billetero JCM UBA-10 es ampliamente conocido por su versatilidad y larga duración, veíamos en videos pasados como reparar y lavar un billetero JCM en tres entregas donde explicamos el paso a paso para desbaratarlo y cuales piezas se pueden lavar con agua.

 

Los billeteros JCM UBA tienen referencias 10 / 11 / 14 / 24 / 25 según el sistema donde se vayan a utilizar bien sea Vending, Gaming o denominaciones en dólares o tamaños similares por el ancho de entrada y los tipos de sensores.

 

Los Billeteros JCM UBA-10 / 11 pueden trabajar con una interfaz RS-232 cosa que los JCM-UBA 14 / 24 / 25 no lo hacen debiendo utilizar una placa impresa para recibir este tipo de señales. En este MANUAL DE ENTRENAMIENTO JCM-UBA10 podrá probar modos de pruebas de aceptación de billetes ,como ingresar al modo de prueba , pruebas del apilador y prueba del stacker , calibración , y listado de errores .

 

Agregamos un enlace donde podrá descargar configuraciones para distintas monedas del país que requiera.

 

 






Instrucciones para conectar una batería recargable alternativa en la plataforma de juego D-PRO MULTIGAME 

Como se leen los valores de los capacitores o Condensadores

Hoy aprenderemos como cambiar una bateria de la máquina MULTIGAMESERIES , aunque parece una cosa muy simple es importante que el(la) supertecknic@ sepa como y donde conectar la nueva unidad . Es importante que sepan que el uso de un bateria no adecuada en la mayoría de los casos termina inutilizando la Tarjeta principal pues quema varios componentes entre ellos el chip de identificación (propio de cada una ) y el U5 .

Entonces cautin , pinzas , amarracables y materiales a la obra!

1. Se usa la bateria del tipo : Li-ion_type 18650_ 3.7V_2200mAh (o más) with protection Circuit Built-in. ¡¡¡Hay que prestar atención especial a que la bateria disponga de una placa de protección contra sobrecarga o descarga profunda!!!

 

 

 

 




2.
La batería se coloca en un soporte plástico para baterías con las dimensiones respectivas (18650).

 




3. Desoldar la batería descargada de la tarjeta.


4. La nueva bateria (ahora en un soporte) se coloca en el chasis de la tarjeta y se conecta por un conector externo a través de la ranura en J24 de dos pines







Teniendo en cuenta que las baterías Li-ion vienen de fábrica con menos de 20% de capacidad de carga, es consecuentemente necesario cargar la batería hasta 100% de capacidad durante 30 horas después de colocarla en la tarjeta DPro.

El tiempo de carga se calcula así:

  • 2200 mAh – 220 (10%) =2000/70mA (corriente de carga media) = cerca de 30


Si la capacidad de la batería a colocar es más de 2200mA, la carga de hasta el 100% tomará más tiempo.






Que es PCM de batería ? Como conectar un PCM o Circuito de Gestión de una Batería 

Como se leen los valores de los capacitores o Condensadores

PCM/BMS/PCB/ o Sistema de Gestión de batería

En muchos de los circuitos electrónicos donde se necesite respaldo de RAM o mantener ciertos elementos energizados, imperativamente se debe utilizar una batería para mantener el sistema. Una batería es un elemento que almacena energía eléctrica pero de manera química para después ser liberada en forma de corriente continua y controlada.

Existen varios tipos de baterías a saber: Litio, LiPo y LiFePo4 que tienen una larga duración en su capacidad de almacenamiento pero que no pueden equilibrarse por si mismas al momento de la recarga, porque la capacidad de la batería, el voltaje y la resistencia no están al mismo nivel, cuando están en un paquete de tres o más celdas; es por ello que pueden incorporar un circuito de protección de carga y descarga llamado Sistema de Gestión de batería o técnicamente nombrado como PCM/BMS/PCB/ pero que en realidad es lo mismo.

 

Litio-Ion: 3.6-3.7v ,imagen

LiFePo4: 3.2v imagen

LiPo Polímero: 3.6-3.7v imagen

La función de estos circuitos es la de controlar cuándo la batería o conjunto de celdas no debe descargarse, cortando la tensión de salida, y a su vez cuando se ha cargado suficientemente, cortando la tensión de entrada.

También permite que circule tensión de la batería y la carga hasta que la tensión disminuya a valores peligrosos para la vida de la celdas 2.75v.o 2.0v; en ese momento, el  Sistema de Gestión de batería o PCM impide la descarga, quedando el “drenaje” o salida de carga suspendido. Contrario, al  momento de la carga cuando cada una de las celdas de 3.2 o 3,7v. ha alcanzado la tensión de 3.6 o 4,22v, el circuito corta la entrada de corriente y goteo, permitiendo la descarga pero no la carga.

 

 

 

Los Sistemas de Gestión de batería o técnicamente nombrado como PCM/BMS/PCB/ se usan en referencias 10440, 14500, 17500, 17670,18500,18650; 20700, 26650, 32650, o en otros tipos conocidas como LiPo 

     

 

Sistemas de Gestión de batería o PCM/BMS con sistema de Balanceo y/o Equilibrado de carga

¿Qué es PCM de Batería?

El PCM/BMS con sistema de Balanceo y/o Equilibrado de carga es el más usado en Baterías LiPo que debido a su alta peligrosidad en el exceso de carga y calentamiento, pueden EXPLOTAR causando quemaduras, llamas y destrucción de los circuitos electrónicos donde pudieran estar instaladas.

 

 

Imagen de tarjeta de máquina de Casino quemada [en rojo] por utilizar una batería no adecuada sin PCM/BMS/PCB/ 

(lea aquí como reemplazar una batería con circuito PCM en máquina de casino MULTIGAME)

Como es el funcionamiento de un PCM/BMS con sistema de Balanceo y/o Equilibrado de carga?

Cuando el Paquete de baterías se está cargando, cada celda a su vez necesita el mismo voltaje, cuando el voltaje no es el mismo, la batería de más voltaje se descargará y espera que las otra alcance el mismo nivel, este funcionamiento se repetirá tantas veces como sea posible según el ciclo de carga/descarga .

 

 

 

No es lo mismo tener una batería de 3S/3 celdas y que cada una de ellas este cargada con 4.2V para un total de 12.6V, a tener otro paquete de celdas que estén cargadas con 4.1V, 4.15 y 4.25V respectivamente, aunque sus cargas sean iguales, el exceso de carga en la tercera celda podría calentarla y dañarla.

 

 

 

Así es como el circuito PCM/BMS/PCB se instala en una batería cilíndrica

Cuales son los componentes de un PCM/BMS/PCB

Básicamente se compone de 1 circuito integrado gestor de carga DW01, 2 Mosfet FS8205S (Dual Mos) para 5A, 2 resistencias y 1 condensador. Un PCM/BMS/PCB puede soportar corrientes mas altas de drenaje si disponen de más de dos Mosfet.  Cada grupo de dos Mosfet ofrecen un drenaje de 5A, hasta 15 amperios; es decir cada Mosfet ofrece 2.5 amperios.

Aquí un circuito de protección de batería (sobrecarga, descarga, sobrecorriente de carga, sobrecorriente de descarga) que utiliza un BQ29700 en la placa principal separada del paquete de batería sin procesar (que suponemos que es una muy mala práctica).

 

Aquí las especificaciones para tener en cuenta de un Sistema de Gestión de batería o PCM/BMS/PCB/

Máximo voltaje: 4.22/4.35V +/- 0.025V por celda
Mínimo voltaje: 2.4V +/-0.08V por celda
Corriente máxima de Protección: +40% de la corriente nominal
Corriente de trabajo: se lee en las espec. del PCM/BMS/PCB/
Respuesta de sobrecarga: 1 segundo
Respuesta de descarga: 0.1 segundo
Consumo: 25~30uA.

                      

 

 

 

Estos circuitos son necesarios para proteger la batería de una explosión, aquí una imagen de una tarjeta que se perdió porque la batería no era la indicada y no contaba con el Sistema de Gestión de batería o PCM/BMS/PCB/

 

 

 

 

 






Como reparar una Tarjeta S-plus cuando los contadores se quedan pegados  

Como se leen los valores de los capacitores o Condensadores







 

 

 

En esta guía de reparación nos vamos a centrar en las máquinas de rieles de la referencia S-plus o S+.

 

 

 

 

Es común que en las instalaciones de sistemas Online se encuentren circuitos que no tienen señal de contadores, para lo que deberemos revisar los componentes como se detallan a continuación:

 

 

 

 

Todos los contadores son manejados por el integrado U23

 

Contador CoinIn es manejado por U23 y el C5

Contador Coinoutes manejado por U23 y el C4

Contador Coindrop es manejado por U23 y el C6

Contador Jackpot es manejado por U23 y el C9

 

Si alguno de estos (C´s) esta en corto estará afectando directamente al contador que maneja (si desea saber como medir un condensador refiérase a nuestro curso de electrónica básica en esta misma sección)

 

Todos los condensadores cerámicos son de 33000PF 100v

 

IMPORTANTE

Además de los C´s existen los K1,K2,K3,K4,K5,K6 que son relevos que trabajan en conjunción con el U23, es conveniente revisarlos de acuerdo al contador que este presentando la anomalía

 

 

 

 

 

En este caso (la mayoría de las veces) se deberá revisar el U23 que como ya sabemos es quien maneja todos los contadores; en conveniente revisar también U33 / U26 / U34 / U13 porque pueden haberse afectado por sobrecarga .

 

 

 

 

 

 

IMPORTANTE

No esta demás revisar los cableados y contadores en general, con el tiempo el recubrimiento del cable de cobre de las bobinas se pierde con el calor y puede producir cortos en el interior de los hardmeters

 

 






Como reparar Critical System error 13 en una CPU Williams  

Como se leen los valores de los capacitores o Condensadores

En esta guía de reparación nos vamos a centrar en las máquinas del tipo Williams NXT. Critical System error 13  Es una de las posibles situaciones a las que se enfrenta un Supertecknic@ y que nos puede dejar desconcertad@s:

 

 

 

Como hacer un RAM CLEAR

 

1. Alinee la muesca (ranura) del chip (integrado) y lo coloqué con la marca del socket , y cuando encendí la máquina, la pantalla comenzó a temblar, pero no dio imagen.

 

2. Verifiqué que el voltaje de la batería y era de 4.0v y volví a colocar ambas placas.

 

3. Intenté rehacer el procedimiento muchas veces, pero todavía nada

 

4. He intentado reiniciar con la llave y el botón de la tarjeta y el botón de reinicio ubicado encima de la tolva del Hopper (sólo para referencia porque no usamos Hopper , sólo billetero).

 

5. Incluso quité la batería durante unas horas. ¿Podría haber quemado el chip del juego o algo más?

 

 

 

 

 

Pudiera ser que el monitor tenga un pin partido o bien se ha dañado y  deba ser reparado, lo pensamos porque si enciende y se ve “temblando”; pero si se prueba el monitor en otra máquina o una computadora portátil y enciende entonces se debe descartar que sea el daño.

 

 

 

 

Primero asegúrese de que todos los chip (integrados) tengan la muesca (ranura) orientada en la dirección correcta.  Si conecta el chip (integrado) al revés, puede quemarlo y, como mínimo, necesitará borrarlo y volverlo a grabar.

 

Segundo saque todos los chip (integrados) límpielos y vuelva a ponerlos teniendo en cuenta la orientación de la muesca (ranura)

 

El hecho de que esté escuchando el sonido de un “bong” (que es el mismo que ocurre cuando se configura alguna opción o se cambia de juego) significa que XU3 está funcionando correctamente, de lo contrario no lo tendría en absoluto.

 

Cuarto mire la pantalla de dígitos LED en la MPU, ¿qué número muestra? Este le sirve de guía para buscar el código para resolver el misterio , el listado de códigos  por lo general está en la puerta de cada máquina, si no está disponible , puede verlos en este enlace aquí  MANUALES NXT

 

 

 

 

No está de más revisar el filtro de línea y las bombillas fluorescentes , al ser tan antigüas generan picos eléctricos que interfieren con el boot del inicio del programa al encenderse. Critical System error 13

 

 

 





Punto de Venta online mundo video
Teléfonos​:

(57​​1) 7568829 - 3606414 - 3606415 FAX (57 1)​ ​3605027

Sedes:

Bogotá / Medellín / Cali / Pereira / Barranquilla

Diseñado y desarrollado por Keyframestudio.co